

Memorandum

Suite 238N
2550 University Avenue West St. Paul, Minnesota 55114

Date: November 6, 2013

To: File

From: JoNette Kuhnau, PE (MN), PTOE

Subject: Connect Cobb Corridor At-Grade BRT Analysis

The purpose of this memorandum is to summarize the evaluation of the feasibility of atgrade transitway operations in support of the Connect Cobb Corridor Environmental Assessment. The background of the evaluation, assumptions, operations results, and recommendations are described in the following sections.

Background

The Locally Preferred Alternative (LPA) for the Connect Cobb project was identified in the Alternatives Analysis finalized in December 2012. See Appendix A for map of the LPA. The Alternatives Analysis included grade separation of the transitway alignment above the roadway intersection at the following 10 locations along the alignment (listed from north to south):

1. US 41 (Cobb Parkway) at McCollum Parkway/Cobb International Boulevard
2. US 41 (Cobb Parkway) at Ernest Barrett Parkway
3. US 41 (Cobb Parkway) at N. Marietta Parkway/SR 120
4. US 41 (Cobb Parkway) at Roswell Road/SR 120
5. US 41 (Cobb Parkway) at S. Marietta Parkway/SR 120
6. US 41 (Cobb Parkway) at Windy Hill Road
7. US 41 (Cobb Parkway) at Cumberland Boulevard/Windy Ridge Parkway
8. Cumberland Boulevard at Spring Road
9. Cumberland Boulevard at Cumberland Parkway/Mall Driveway
10. US 41/Northside Drive at 17th Street

The proposed grade separations identified in the Alternatives Analysis were based on a screening level of assessment of existing traffic operations and forecast traffic volumes. The project is now in the Environmental Assessment phase, and a more detailed evaluation was completed to verify whether the intersections should continue to be proposed as grade separations or whether at-grade intersections would be operationally feasible, based on potential benefit as well as potential cost.

Assumptions

The Alternatives Analysis documents an expected vehicular traffic growth rate of 1.6 percent per year to 2040 (equivalent to 56 percent growth over the forecast horizon) based on the ARC Plan 2040 Travel Demand Model. The existing PM peak hour traffic volumes on Cobb Pkwy and intersecting roadways are shown in Table 1, along with the estimated hourly roadway capacities, and forecast PM peak hour volumes based on the 1.6 percent growth rate.

Since the roadways in the study area would not be able to deliver these forecast volumes to the intersections, an alternative approach to the future traffic volumes was considered. Other studies in the project area and recent trends in traffic volumes would suggest that a 1.0 percent per year growth rate (equivalent to 32 percent growth over the forecast horizon) may be more realistic, and the resulting 2040 forecast volumes using this growth rate are also shown in the last column of Table 1. Volumes that are approaching capacity (volume/capacity ratio of $0.88-1.00$) are shaded orange, and volumes that are over the roadway capacity are shaded red.

Note that for the remainder of this memorandum, the scenario using the 1.6 percent per year growth rate will be referred to as the "High Growth" scenario, and the scenario using the 1.0 percent per year growth rate will be referred to as the "Medium Growth" scenario.

Table 1. Existing and Forecast PM Peak Hour Traffic Volumes

	Existing (2012) PM Peak Hour Volume	Planned Future Roadway Geometry	Estimated Future Peak Hour Capacity ${ }^{1}$	Forecast 2040 PM Peak Hour Volume - High Growth Scenario	Forecast 2040 PM Peak Hour Volume - Medium Growth Scenario
US 41 (Cobb Pkwy) McCollum Pkwy/ Cobb International Blvd to N. Marietta Pkwy/SR 120 2,440 4-lane divided 3,220 3,810	3,220				
N. Marietta Pkwy/SR 120 to S. Marietta Pkwy/SR 120	2,270	4-lane divided	3,220	3,540	3,000
S. Marietta Pkwy to Windy Hill Rd	2,780	6-lane divided	4,880	4,340	3,670

[^0]| Roadway Segment | Existing
 (2012)
 PM Peak
 Hour
 Volume | Planned
 Future
 Roadway
 Geometry | Estimated
 Future
 Peak Hour
 Capacity ${ }^{1}$ | Forecast
 2040 PM
 Peak Hour
 Volume -
 High
 Growth
 Scenario | Forecast 2040 PM
 Peak Hour Volume Medium Growth Scenario |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Windy Hill Rd to Windy Ridge Pkwy | 2,900 | 6-lane divided | 4,880 | 4,520 | 3,830 |
| McCollum Pkwy | 1,270 | 4-lane divided | 2,900 | 1,980 | 1,680 |
| Cobb International Blvd | 300 | $\begin{gathered} \text { 4-lane } \\ \text { undivided } \end{gathered}$ | 2,750 | 470 | 400 |
| Barrett Pkwy | 2,140 | 5-lane divided | 3,650 | 3,340 | 2,820 |
| N. Marietta Pkwy/ SR 120 | 1,470 | 4-lane undivided | 3,060 | 2,290 | 1,940 |
| Roswell Road/ SR 120 | | | | | |
| East of Cobb Pkwy | 1,390 | $\begin{gathered} \text { 5-lane } \\ \text { undivided } \end{gathered}$ | 3,460 | 2,170 | 1,830 |
| West of Cobb Pkwy | 980 | $\begin{gathered} \text { 2-lane } \\ \text { undivided } \end{gathered}$ | 1,480 | 1,530 | 1,290 |
| S. Marietta Pkwy/ SR 120 | 1,650 | 6-lane divided | 4,880 | 2,570 | 2,180 |
| Windy Hill Road | 2,400 | $\begin{gathered} \text { 4-lane } \\ \text { undivided } \end{gathered}$ | 2,750 | 3,740 | 3,170 |
| Cumberland Blvd/ Windy Ridge Pkwy | 1,360 | 4-lane divided | 2,900 | 2,120 | 1,800 |
| Cumberland Blvd | 2,080 | 4-lane divided | 2,900 | 3,240 | 2,750 |
| Spring Rd | 2,580 | $\begin{gathered} \text { 5-lane } \\ \text { undivided } \end{gathered}$ | 3,460 | 4,020 | 3,410 |
| Cumberland Pkwy | 670 | $\begin{gathered} \text { 4-lane } \\ \text { undivided } \end{gathered}$ | 2,750 | 1,050 | 880 |
| Mall Driveway | 2,050 | 4-lane divided | 2,900 | 3,200 | 2,710 |
| US 41/Northside Dr | 2,940 | 4-lane divided | 3,220 | 4,590 | 3,880 |
| $17^{\text {th }} \mathrm{St}$ | 1,580 | 4-lane divided | 2,900 | 2,460 | 2,090 |

The volumes in Table 1 indicate that without significant capacity improvements, which are not currently planned or programmed, many of the roadways and intersections in the study area would not able to accommodate the High Forecast traffic volumes to the intersections being analyzed during the peak hour. Therefore the analysis of the High Growth scenarios may not be representative of what would be expected in the 2040 conditions, since the forecast volumes would not be able to reach the analysis intersections. Therefore, in order to evaluate the potential range of operations under varying growth scenarios as well as assess the feasibility of the forecast traffic volumes and need for grade separation of the transitway, traffic analysis was conducted for both the High Growth and Medium Growth scenarios.

Due to the preliminary nature of the transitway alternatives at this phase of the project development, a number of other assumptions were also made in the analysis as documented in the following.

Analysis Intersections

Five representative intersections were initially selected for the analysis:

- US 41 (Cobb Parkway) at Roswell Road/SR 120
- US 41 (Cobb Parkway) at S. Marietta Parkway/SR 120
- US 41 (Cobb Parkway) at Windy Hill Road
- US 41 (Cobb Parkway) at Cumberland Boulevard
- Cumberland Boulevard at Spring Road

The proposed geometric layouts for the five intersections analyzed are provided in Appendix B.

Modeling Scenarios

- All analysis was completed in VISSIM because of the software's ability to specifically model transit operations, including transit schedule, station stops, and traffic signal preemption.
- Six scenarios were modeled for each intersection:
- 2012 No Build - Geometrics as shown in the attached figures, existing PM peak hour turning movement volumes, and existing traffic signal phasing.
- 2012 Build - Geometrics as shown in the attached figures and existing PM peak hour turning movement volumes. Transitway crosses the intersection at-grade with preemption, i.e., the transit vehicles are always given a green signal phase and do not stop at the intersection. Only Preemption operations were modeled for the Build conditions, as this would produce the greatest transit benefit and allow the BRT system to operate similarly to the grade-separated option.
- 2040 No Build Medium Growth - Geometrics as shown in the attached figures, 2040 forecast PM peak hour turning movement volumes based on 1.0 percent per year growth, and existing traffic signal phasing.
- 2040 No Build High Growth - Geometrics as shown in the attached figures, 2040 forecast PM peak hour turning movement volumes based on 1.6 percent per year growth, and existing traffic signal phasing.
- 2040 Build Medium Growth - Geometrics as shown in the attached figures and 2040 forecast PM peak hour turning movement volumes based on 1.0 percent per year growth. Transitway crosses the intersection at-grade with preemption.
- 2040 Build High Growth - Geometrics as shown in the attached figures and 2040 forecast PM peak hour turning movement volumes based on 1.6 percent per year growth. Transitway crosses the intersection atgrade with preemption.
- Only PM peak hour was modeled, based on availability of existing (2012) turning movement count data.

Traffic Signal Operations

- In the Build scenarios, all mainline left-turn movements that turn from parallel to the guideway across the guideway must have protected-only phasing due to the conflict with the through transit vehicles.
- 2012 and 2040 signal timings were based on the existing phasing and timings provided by Pond and Company from existing Synchro files, with left-turn phasing changed to protected-only where necessary.
- Transit signal priority was assumed to consist of early green and extended green to serve the transit phase. No phase omits were assumed. Transit signal priority was not modeled as part of these scenarios, but could be considered in the future.
- The preemption operations assume that the transitway phase will also operate concurrently with the compatible through movements.
- The transitway crossings were assumed to be controlled by the signals only, without use of automatic gates.
- Roadway speed limits were assumed to be the same as existing conditions.

Transit Operations

- The transit assumptions were based on the information contained in Table 5-11 of the Alternatives Analysis for Alternative 4b (Bus Rapid Transit).
- Maximum transitway speed of 35 mph .
- Transit headways of 8 minutes in each direction.

Geometrics

- The geometrics as shown in Appendix B were used for the future year modeling.
- At several locations, the initial round of Build scenario modeling using the geometrics as shown in Appendix B resulted in poor operations with BRT operating at-grade. Therefore, additional improvements, such as turn lanes, were
identified at these intersections, and further modeling was conducted to determine if these capacity improvements could be implemented to avoid the need for grade separation. The geometric improvements included as part of the Build Improved scenario are proposed on a conceptual level only. Further analysis and evaluation would be needed before these improvements are incorporated into the project, and therefore the potential improvements in this scenario have not been included in the exhibits shown in Appendix B. These improvements were modeled only for the Build Improved scenario and are as follows:
- US 41 (Cobb Parkway) at Roswell Road/SR 120
- Construct second northbound left-turn lane along Cobb Parkway
- Construct second receiving lane along the Roswell Road westbound leg departing intersection for approximately 500 feet
- Construct exclusive westbound right-turn lane and reconfigure Roswell Road approach as: right-turn lane, through lane, dual left-turn lanes
- US 41 (Cobb Parkway) at Cumberland Boulevard/Windy Ridge Parkway
- Construct second northbound left-turn lane along Cobb Parkway
- Construct second westbound left-turn lane along Windy Ridge Parkway
- Cumberland Boulevard at Spring Road
- Increase northbound left-turn lane storage along Cumberland Boulevard to 500 feet
- Increase southbound left-turn lane storage along Cumberland Boulevard to 250 feet
- Construct second eastbound left-turn lane along Spring Road

Results

VISSIM software was used to analyze the five intersections for each of the scenarios because of its ability to model traffic and transit operations. The results for each of the analysis scenarios are presented in Table 2. The results reflect the average of 10 one-hour runs.

The standard used for mitigation of traffic operations impacts is to mitigate to LOS D, or to the No Build LOS if the intersection operates at LOS E or LOS F in the No Build conditions.

It should be noted that the US 41 (Cobb Parkway)/Windy Hill Road intersection is planned to be reconstructed (by others) as a grade-separated interchange prior to 2040. Therefore, capacity improvement measures, such as turn lanes, have not been analyzed for this location.

Localized intersection capacity improvements, such as turn lanes, were not analyzed for the High Growth scenario. Even with these improvements, there would not be sufficient capacity on the approach roadways to allow the forecast traffic volumes to be delivered to the intersection from the upstream roadways and intersections. Additional geometric and operational improvements would need to be explored to maintain the No Build LOS with an at-grade transitway, if the High Growth forecast is to be used as the basis for the design.

Table 2. PM Peak Hour Operations Results

Intersection	Intersection Level of Service						
	Existing (2012)		2040 High Growth Scenario		2040 Medium Growth Scenario		
	$\begin{gathered} \text { No } \\ \text { Build } \end{gathered}$	Build	$\begin{gathered} \text { No } \\ \text { Build } \end{gathered}$	Build	$\begin{gathered} \text { No } \\ \text { Build } \end{gathered}$	Build	Build Improved
US 41 (Cobb Parkway) at Roswell Rd/SR 120	D	D	F	F	D	F	D*
US 41 (Cobb Parkway) at S. Marietta Parkway/SR 120	D	D	D	E	D	D	D
US 41 (Cobb Parkway) at Windy Hill Road	D	E	F	F	E	F	F
Cumberland Boulevard at Spring Road	D	D*	F	F	E	F	E*
US 41 (Cobb Parkway) at Windy Ridge Parkway/ Cumberland Boulevard	D	D	F	F	D	F	D*

* With additional capacity improvements as listed in previous section.

Findings

The High Growth scenario does not appear to produce reasonable forecasts for the peak hour, as significant mainline capacity improvements would be needed to deliver these volumes of traffic to the intersections in question. Therefore, it is recommended that the Medium Growth peak hour volumes be used for evaluating traffic and transit operations along the corridor, unless major highway capacity improvements are planned and programmed independently of this project.

The operations analysis shows that under the Medium Growth scenario, it would be feasible to design an at-grade intersection at a number of the locations currently identified for grade separation, although some of the at-grade intersections may require turn lane and other minor capacity improvements. The potential level of improvements to allow for acceptable at-grade operations have been shown in Table 3. They have been categorized as High, Medium, or Low based on the LOS of the intersections that were modeled, the 2040 forecast intersection entering volumes for the PM peak hour, the volume/capacity ratio of the intersection, and the type of transitway crossing.

The three intersections identified in the High category would be most likely to require major infrastructure improvements within the 2040 planning horizon, which could include grade separation. Additional analysis would be needed at the US 41 (Cobb Parkway)/Ernest Barrett Parkway and US 41/Northside Drive/17th Street intersections to determine the type of improvements necessary to mitigate the intersection to LOS D or to the No Build LOS. The intersections identified in the Low and Medium categories are expected to require lower levels of improvements, if any, which could include turn lanes, approach lane reconfiguration, or signal phasing changes. With the exception of diagonal crossings of the transitway through an intersection, the elimination of transit preemption, or a change from transit priority to no transit advantage, could also be potential future measures used to mitigate the impacts of the at-grade transitway. Additional analysis would be needed in later phases of the project to determine the preferred signal operation and types of turn lane improvements potentially needed at each signalized intersection in the corridor to provide for safe and efficient at-grade operation of the transitway.

Table 3. Potential Intersection Improvements

Location	2040 PM Peak Entering Volume - Medium Growth		Guideway Alignment/ Crossing	Level/Priority for Improvements
	Total Volume (vehicles/hour)	Estimated Volume/ Capacity Ratio		
US 41 (Cobb Parkway) at McCollum Parkway/Cobb International Boulevard	4,600	0.75	Diagonal through intersection	Low/ Medium
US 41 (Cobb Parkway) at Ernest Barrett Parkway	5,800	0.85	Center Median Running	High*
US 41 (Cobb Parkway) at N. Marietta Parkway/SR 120	4,800	0.70	Center Median Running	Low
US 41 (Cobb Parkway) at Roswell Road/SR 120^{\dagger}	4,500	0.80	Center Median Running	Medium
US 41 (Cobb Parkway) at S. Marietta Parkway/SR 120^{\dagger}	4,800	0.75	Center Median Running	Low
US 41 (Cobb Parkway) at Windy Hill Road	6,000	0.80	Center Median Running	High*
US 41 (Cobb Parkway) at Cumberland Boulevard/Windy Ridge Parkway	5,300	0.70	Diagonal through Intersection	Low/ Medium
Cumberland Boulevard at Spring Road ${ }^{\dagger}$	5,000	0.90	Center Median Running	Medium/ High
Cumberland Boulevard at Cumberland Parkway/Mall Driveway	4,100	0.70	Center Median Running	Low
US 41/Northside Drive at 17th Street	5,500	0.90	Diagonal through Intersection	High*

Notes:
${ }^{\dagger}$ Turn lane improvements needed if BRT operating at-grade, as noted previously in this document.

* Likely requires significant infrastructure improvements, which could include additional through lanes or grade separation.

APPENDIXA - Locally Preferred Alternative

and Associates, Inc.

APPENDIXB - PROPOSED INIERSECIION GEOMEIRICS

1) US 41 (Cobb Parkway) at Roswell Road/SR 120
2) US 41 (Cobb Parkway) at S. Marietta Parkway/SR 120
3) US 41 (Cobb Parkway) at Windy Hill Road
4) US 41 (Cobb Parkway) at Cumberland Boulevard
5) Cumberland Boulevard at Spring Road

[^0]: ${ }^{1}$ Source: Florida DOT Quality/Level of Service Handbook. Capacity estimates for Urbanized areas.

